
Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Inheritance and Polymorphism

2 - 1

What is Inheritance?
Inheritance versus
Composition
Polymorphism

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The notion of entities being a more specific thing than others of a similar type is common both
in the real world and in software systems.

In a software system, we can model the "is-a" or "is-a-kind-of" relationship using inheritance.
Inheritance is really just another kind of relationship in addition to the associations covered
earlier.

The UML symbol for inheritance is a line with a broad-headed arrowhead. The "pointed-to"
class is referred to as the superclass, while the other class is called the subclass.

Also remember that we model classes in UML, but what really counts in the relationships
between objects of the classes.

What is Inheritance?

2 - 2

Vehic le

Car Bus

Person

Employee

Janitor

In the real world, and in software systems, many
things are "a kind of" another, more general thing

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

There a couple of key benefits to using inheritance:

1. Inheritance lets you create models that closely approximate the real-world entity upon
which the model is based. Lowering the so-called "representational gap" makes your software
easier to understand and develop.

2. When combined with polymorphism (covered later), inheritance lets you create systems that
are easy to extend without risking breakage to existing code.

Why Use Inheritance?

2 - 3

Person

Employee

Janitor DeskClerk

If you can discern "is a kind of" relationships in
your analysis, you can use inheritance to make your
objects more reusable and extensible

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Sometimes it's difficult to determine whether to use inheritance or aggregation to implement a
relationship, but you can use the "is-a" and "has-a" phrases as a quick test.

Inheritance Vs Composed-Of
Relationships

2 - 4

Vehicle

Car Bus

Car Dashboard
1

We have seen classes that have aggregation or
composition relationships with other classes
You can generally determine this kind of
relationship using the phrases "is a" (inheritance)
versus "has a" (aggregation)

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

C# uses syntax similar to C++ to indicate inheritance.

C# and Inheritance

2 - 5

Vehicle

Car B us

1 public class Vehicle
2 {
3 }
4
5 public class Car : Vehicle
6 {
7 }
8
9 public class Bus : Vehicle
10 {
11 }

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

This is the very basis of inheritance -- it allows you to create successively more refined and
concrete classes that augment or replace states and behaviors from the superclass.

In this example, the additional state of a Bus might include the number of seats, whether the
Bus has overhead storage, and so forth.

Derived Class Objects are a Superset

2 - 6

aBus

Vehicle states
Vehicle behaviors

Bus states
Bus behaviors

Vehicle

Bus

Once instantiated, an object of a derived class type
has all of the behaviors and states of its base
class in addition to any additional features defined
by the derived class

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

While it might seem weird that a derived class method cannot directly access states and
behaviors defined in a base class, the restriction actually makes for less brittle software. If a
derived class can directly access features in a base class, then the derived class might need to
be changed if we change the feature in the base class. That's unacceptable, especially
considering that it's common for a different programmer to code the base class and the derived
classes.

So how would the Bus class access the Vehicle weight? The common practice is for the base
class to define public properties that give controlled access to private members.

Accessing the Base Class

2 - 7

In most object-oriented programming languages,
features marked as private are not accessible to
derived classes
That improves encapsulation and reduces the risk
that changes in the base class break derived classes

1 public class Vehicle
2 {
3 private int weight;
4 }
5
6 public class Bus : Vehicle
7 {
8 public void MyMethod()
9 {
10 System.Console.WriteLine(weight); // ERROR!
11 }
12 }

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

As you define derived classes, you add states and behaviors so that classes at the "bottom" of
the hierarchy are more "real" than classes at the top.

As you design a hierarchy, you often "factor out" common states and behaviors and define
them in a common base class. This "factoring out" leads to designs that are easier to maintain,
since if you need to change something, you only need to change it one place.

Building Class Hierarchies

2 - 8

P ers on

E mployee

Jani tor Desk Cler k

General Abstract

Specific Concrete

In a typical hierarchy, the base classes are more
general and less concrete than the derived classes

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Quiz: What Kind of Relationship?

2 - 9

Shape

Ellipse

Rectangle

Polygon

Circle

Square

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Quiz: What Kind of Relationship?

2 - 10

Book

Chapter

Paragraph

Sentence

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Quiz: What Kind of Relationship?

2 - 11

George V

Edward V III George VI Ma ry John

E lizabeth II M argaret

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

As we've already seen, a subclass can provide additional states and behaviors. A subclass can
also CHANGE inherited behaviors by providing a method with the same name and arguments
(method signature). When you create an instance of the subclass and call the method, the
system invokes the method implementation defined in the subclass.

There are basically three things you can do in an overriden method: 1. Completely replace the
implementation provided by the superclass(es). 2. Augment behavior provided by the
superclass(es). In other words, do additional work, and also call back to the superclass
implementation. 3. Completely remove the behavior by writing an empty method in the
subclass.

Overriding Behaviors

2 - 12

If a derived class provides a method with the same
name and arguments as in the base class, the derived
class's method can override the base class method
Overriding lets derived classes modify behaviors
provided by base classes
To override, the base class method must be marked
as virtual and the derived class method should
specify override

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Object represents a generic .NET object and provides the basic behavior required by all objects
in .NET.

The Object class is the only class that does not have a base class.

The Object class is also the base type for "value types", which includes the Int32 and DateTime
structs mentioned earlier.

The Object Class

2 - 13

If you don't specify a base
class, C# uses the predefined
System.Object class
All .NET types ultimately
derive from Object

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Since constructors often have the job of initializing a class's fields, it's important that base
classes have the opportunity to initialize fields, too. Therefore, C# requires that all
constructors in derived classes invoke a constructor in the base class.

The derived class constructor can invoke ANY base class constructor, not just a base class
constructor that has a signature matching the derived class constructor.

If you omit the invocation, then C# automatically inserts a call to the base class's no-argument
constructor.

Constructors and Superclasses

2 - 14

Every constructor in a derived class must invoke a
base-class constructor
If you omit the call to the base class ctor, C# will
insert it for you

1 public class Circle : Shape
2 {
3 private double radius;
4
5 public Circle() : base()
6 {
7 }
8 public Circle(double radius)
9 {
10 this.radius = radius;
11 }
12 public Circle(int x, int y) : base(x,y)
13 {
14 }
15 . . .
16 }

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

This code will not compile since the Rectangle class's constructor doesn't explicitly invoke a
base class constructor -- therefore the compiler assumes the no-argument constructor. Since
the base class (Shape) doesn't have a no-argument constructor, the compiler flags an error.

Constructors and Superclasses. cont'd

2 - 15

Where's the compile error in this code?

1 public class Shape
2 {
3 public Shape(int x, int y)
4 {
5 }
6 }
7
8 public class Rectangle : Shape
9 {
10 public Rectangle()
11 {
12 System.Console.WriteLine ("no-arg ctor");
13 }
14 }

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The idea behind polymorphism is that we often need to extend existing systems by adding new
functionality and classes. Ideally, if we add a new class, we don't want the addition to require
us to change any existing code.

The issue is that if our existing code uses some sort of "if" or "switch-case" statement to
perform operations based on an object's type, then that code will need to be updated if we add
a new class to the system. That's what polymorphism helps us avoid.

Polymorphism

2 - 16

Polymorphism lets you design extensible,
malleable systems to which you can add new
classes without breaking existing code
If you find yourself writing programs that use "if"
statements to determine an object's type, you
probably are not using polymorphism correctly

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

C# allows you to assign references to subclass objects to variables typed as a superclass
reference.

When you invoke a method on a reference, C# runs the subclass implementation. That means
that at runtime, the .NET runtime must examine the object's type, not the type of the
reference. This is referred to as "late binding", since the chosen implementation is determined
at runtime rather than at compile time.

Polymorphic Reference Assignment

2 - 17

Shape

Circle
r

CalcArea()

CalcArea()

adius

Rectangle
width
height

1

2
3CalcArea()

1 Shape p1 = new Shape(); // OK?
2 Circle p2 = new Circle(); // OK?
3 Rectangle p3 = new Rectangle(); // OK?
4
5 Shape p4 = new Circle(); // OK?
6 Shape p5 = new Rectangle(); // OK?
7 Circle p6 = new Shape(); // OK?
8
9 // which implementation runs?
10 p1.CalcArea();
11 p2.CalcArea();
12 p3.CalcArea();
13 p4.CalcArea();
14 p5.CalcArea();
15 p4 = p5;
16 p4.CalcArea();

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The code shown here creates a List collection and then stores a few Circle and Square objects
in the collection. Note that Circle and Square are derived from Shape.

Then to calculate the total area, we loop through the collection, calling the CalcArea() method
on each Shape.

The key is that if we defined a new Shape, say a RightTriangle, the loop would still work the
same! In other words, since all Shapes provide an overriden CalcArea() method, our code
doesn't break if we add a new kind of Shape. That's what polymorphism is all about.

Also note the use of the "foreach" loop -- it provides a handy syntax for iterating over
collections or arrays.

Writing Polymorphic Algorithims

2 - 18

Using polymorphism, you can write algorithms that
work without modification even if you add new
subclasses
If you find yourself writing programs that use "if"
statements to determine an object's type, you
probably are not using polymorphism correctly

1 List<Shape> shapes = new List<Shape>();
2 shapes.Add(new Circle());
3 shapes.Add(new Rectangle());
4
5 double totalArea=0;
6
7 foreach (Shape s in shapes)
8 {
9 totalArea += s.CalcArea();
10 }

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

An abstract method consists of a method definition with no body (i.e. no open and close curly
braces). Any concrete subclass must provide an implementation of the method, or else the
compiler will flag an error.

An abstract class can define data and can have non-abstract methods.

Classes with abstract methods let you define partially implemented classes high in a class
hierarchy and force subclasses to provide required behaviors.

The chief differences between an abstract class and an interface is that interfaces can contain
no code at all and that any given class can implement multiple interfaces, but can extend only
one class.

Using Abstract Classes

2 - 19

An abstract class cannot be instantiated, but can
be derived from
Any class that contains any abstract methods must
itself be marked as abstract

1 public abstract class Shape
2 {
3 private int x,y;
4
5 public abstract double CalcArea();
6 public virtual void Draw()
7 {
8 System.Console.WriteLine("x: " + x);
9 System.Console.WriteLine("y: " + y);
10 }
11 }

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Review Questions

2 - 20

Why is good that dervied class methods cannot
access private state and behaviors from base
classes?
What is the major benefit of polymorphism?

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Quick Practice

2 - 21

 Write a class named Policy that represents an
insurance policy. The class should have state for
the policy number and amount. Then write a
derived class named AutoPolicy that has additional
state for the covered car model (String).

 If you have time, write constructors in each of the
classes. The derived class constructor should
explicitly invoke the base class constructor.

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Chapter Summary

2 - 22

In this chapter, you learned:

About the benefits of inheritance and
class hierarchies
The basics of using polymorphism

Copyright © Descriptor Systems, 2001-2007. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

