
Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Classes and Relationships

1 - 1

Encapsulation
Navigability and Multiplicity
Composition and
Aggregation

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

As you've already learned, an object consists of data (state) and methods (behavior) and that each
object is separate for all others.

You also learned the UML symbol for an object, which is a box with the object's name underlined.

Review: What is an Object?

1 - 2

inside

outside

Object
Name

Sample
State

Sample
Behavior

lassie weight bark

account12 balance debit

policy765 amount payOut

lassie

account12

policy765

An object is a set of state and the behaviors that
act on them
Objects have an inside and an outside

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

You've also learned that classes define the state and behavior for sets of objects and that in most
object-oriented programming languages, the class acts as a factory for creating objects.

In this chapter, we will now learn more about modeling classes in UML and how to define relationships
between classes.

It's important to note that classes are really just a modeling technique -- at runtime, it's the objects that
have state, behavior and relationships and implement the software system.

Review: What is a Class?

1 - 3

A class is blueprint for objects
Most object-oriented languages require you to
define the class before creating objects

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The class diagram lets you define the blueprint for objects of that class and includes compartments for
the class name, states and behaviors. Note that the state and class name are nouns, while the behavior
names usually include a verb and have parenthesis.

UML Class Diagrams

1 - 4

Class Name

States

Behaviors

Student

name
gpa
studentID

isHonorRoll()
dropClass()

UML provides the class diagram to let you model
the structural (static) aspects of your software
system
The class diagram is probably the most well
known and often-used UML diagram

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Class diagrams are an integral part of any iterative process that uses UML. We perform domain analysis
to create class diagrams that help us model the entities in our software system. We then refine the
class diagrams to create more detailed, design-level diagrams that we can then translate into actual
software.

Class Diagrams in the Unified Process

1 - 5

Requirements
Gathering

Analysis
and

Design

ImplementationTesting

completion!

You can create class diagrams both during analysis
(domain modeling) and design

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

During analysis, we are trying to understand the system, so it's not generally useful to spend much time
thinking about implementation details, including the language types for states and the parameter lists
for methods.

On the other hand, design-level diagrams should be detailed enough so that we can write (or generate)
software that implements the model. Therefore, design-level diagrams need to have sufficient detail.

So during an iterative process, you first create an analysis model for the iteration, then flesh it out to
create the design model. You should note however, that there's not always a one-to-one list of classes
in the two models -- often while transforming the analysis model, you discover other required classes or
determine that multiple domain classes should be combined.

Analysis and Design Level Class Diagrams

1 - 6

Student Student

name
gpa
studentID

name:String
gpa:double
studentID:int

isHonorRoll()
dropClass()

isHonorRoll():boolean
dropClass(classNo:int):void

Analysis (Domain)
Diagram

Design
Diagram

Analysis-level diagrams generally contain less
detail than design-level diagrams

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The more implementation details you can hide, the better, since that guarantees that the outside world
cannot depend on the details (i.e. you can change the details without worrying that something outside of
the class will break). Of course, a completely encapsulated class is of no use, so you will need to find a
balance between encapsulation and actually getting something done.

A general rule of thumb (with many exceptions!) is that you should make state private and methods
public. This is not a hard-and-fast rule, however -- it's quite common to have private methods that are
only called from within the class.

Encapsulation

1 - 7

name
gpa
studentID

dropClass()

isHonorRoll()

cindy-jones

Encapsulation is one of the three pillars of
object-orientation
Encapsulation decreases the brittleness of your
software system

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Private is the access specifier that most languages use to indicate the highest degree of encapsulation
-- private parts of a class can only be accessed from within the class itself. We use the minus sign in
UML to indicate private access.

Public access means that any code can access the state or behavior. UML uses the plus symbol to
indicate public access.

Some languages support additional levels of encapsulation, for example, Java and C++ both support
"protected", which is like private, except that subclasses can also access the state or behavior.
Protected access breaks encapsulation to a degree, since it lets subclass methods directly access
things in the superclass, but it can lead to better performance.

Public, Private and Protected

1 - 8

Student

- name:String
- gpa:double
- studentID:int

+ isHonorRoll():boolean
+ dropClass(classNo:int):void

- private
+ public
protected

Most object-oriented programming languages
support public and private access
Some programming languages support additional
access specifiers

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Here we show a Java class that implements the design-level class diagram shown earlier. Note how the
states are private (lines 3 to 5), while the behaviors are public (lines 7 to 15). Note also how the types of
states and method parameters in the design-level class carry over into the Java class.

Also note line 14, which is a Java comment line. In a complete implementation, we would write Java
code within the dropClass() method, but here we just show a comment indicating what needs to be
done.

Java Class With Encapsulation

1 - 9

1 public class Student
2 {
3 private String name;
4 private double gpa;
5 private int studentID;
6
7 public boolean isHonorRoll()
8 {
9 if (gpa > 3.0) return true;
10 else return false;
11 }
12 public void dropClass(int classNo)
13 {
14 // drop the class
15 }
16 }

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Here we show a portion of the Student class, showing how we can use get/set methods to provide
controlled access to state. Note how the get/set methods are public, while the state itself remains
private. Though we didn't have enough room to show all of the code, the remaining states and get/set
methods follow the same pattern.

The get/set methods are sometimes referred to as 'accessor' and 'mutator' methods. Furthermore, the
naming pattern shown here is very common in Java classes referred to as JavaBeans.

One other note -- it's common to omit get/set methods in class diagrams, even design-level diagrams.
That's because it's such a common facility, most developers just assume that they need to exist for
each state item.

Get/Set Methods

1 - 10

Though we generally make state private, the
outside often needs to access an object's state
To provide controlled, encapsulated access, you
can write get/set methods

1 public class Student
2 {
3 private String name;
4
5 public String getName()
6 {
7 return name;
8 }
9 public void setName(String s)
10 {
11 name = s;
12 }
13 . . .
14 }

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The UML provides a rich set of symbols and annotations so that we can model the relationships
between classes. It is important to note however, though we model relationships between classes, at
runtime, the relationships are actually between objects of the various classes.

Introduction to Relationships

1 - 11

Course

courseTitle
courseNumber
creditHours

addSection()
assignProfessor()

Section

sectionNumber
classRoom
start Time
length

assignTA()

Professor

name
office
tenure

assignTA()

TeachingAssistant

name
degree

*

0..8

1

1
1..4

Most business objects need to reference other
objects in the same domain
We can model references using relationships in a
class diagram

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

In UML, to define a simple association, you draw a line between the classes. In the figure on this page,
we are indicating that there's some relationship between a Professor and a TeachingAssistant.

In an analysis-level diagram, it's common to leave the association unadorned, unless during domain
analysis, you can discover additional attributes about the relationship. We will cover some refinements
on the next few pages.

Associations

1 - 12

Professor

nam e
off ice
tenure

ass ignTA()

TeachingAss is tant

name
degree

Association
Relationship

An association is a simple relationship that
indicates that objects in two classes are related in
some way
We will examine several refinements to the simple
association

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Labels can convey useful information, but in many cases, they are redundant. For example, here one
could argue that it's obvious what the relationship is between a Professor and a TeachingAssistant, so
it would be OK to omit the label.

Note that we read relationships from left to right. If for some reason you cannot layout the diagram in
left-to-right fashion, you can decorate labels with an arrow that shows the direction of the label.

Relationship Labels

1 - 13

Professor

nam e
office
tenu re

assignTA()

Teach ing Assistan t

n ame
d egree

Relationship
Label

mentors

For readability and documentation, you can label
relationships
Often, labels are redundant and unnecessary

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

As you saw with relationship names, often role names are obvious and redundant and just clutter the
diagram.

One case where they are useful is in a self-referencing relationship like the one shown on the right. The
role names make it clear what we are trying to model with the self-relationship.

Relationship Roles

1 - 14

E mployee

m anager

peon

o fessor

A ()

Teach ingAssis tan t

nam e
degr ee

Role Names

mentor mentoree

Instead of labeling a relationship, in some cases it's
more informative to label the roles that source and
destination objects play
In a design-level model, the role names are often
used to name the variables that implement the
relationship

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

On a relationship line, an arrowhead indicates navigability from the source to the destination. Lack of
any arrowheads implies navigability in both directions.

In this model, it's important to find an Address, given a Person, but it's not important to be able to find a
Person given an Address.

Relationship Navigability

1 - 15

Person

nam e

Address

str eet
ci ty
state
zip
countr y

Directed
Relationship

Navigability refers to objects of a class being to
directly send messages to objects of the
referenced class
Navigability implies that the source object keeps a
reference to the destination object
Note that it's common to omit navigability in an
analysis-level diagram

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Multiplicity labels are an optional annotation that let you model the count of references on each side of
the relationship. In this case, each TeachingAssistant "belongs" to a single Professor, and each
Professor can mentor up to eight TeachingAssistants.

Relationship Cardinality

1 - 16

Pr ofess or

name
office
tenure

ass ignTA()

Teac hingAss istant

name
degr ee

Multiplicity
Labels

1 0..8

Cardinality (a.k.a multiplicity) refers to the number
of references from the source object to the
destination
Multi-valued references imply that the source object
maintains a list or collection of references to the
destination objects
Note that it's common to omit cardinality in an
analysis-level diagram

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Cardinality Options

1 - 17

Label Meaning

1 Exactly one

Many0..* or *

1..* One or more

3..4 or 8 Exact number

0..2, 4..6, 8..* Complex relationship, in
this case any number
except 3 or 7

UML provides several ways to indicate cardinality

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Aggregation indicates a whole/part relationship, which is a stronger relationship than a simple
association. In UML, we use a diamond arrowhead on the 'whole' side of the relationship.

In this model, we are saying that a Section is made up of Students. Furthermore, this model says that
it's possible for a Student to exist, but not be enrolled in any Section -- this notion of "standing alone" is
what differentiates aggregation from composition as described on the next page.

Aggregation

1 - 18

Section

sectionNumber
classRoom
startTime
length

assignTA()

Student

name
studentID
gpa

isHonorRoll()

**

Aggregation is a stronger form of a simple
reference
Aggregation implies that the destination object(s)
are part of the source object

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Like aggregation, composition indicates a whole/part relationship, but with the added proviso that the
"parts" cannot exist without the "whole". In UML, we use a filled diamond arrowhead on the "whole" side
of the relationship.

This model, therefore indicates that it doesn't make sense for a Section to exist without being assigned
to a Course and that a given Section cannot belong to any other Course.

If the difference between aggregation and composition is bit hazy, don't worry -- there's not wide
agreement in the UML community about them. In fact, according to Martin Fowler, the author of "UML
Distilled", even the Three Amigos don't see exactly eye-to-eye on the subject!

Composition

1 - 19

Course

courseTitle
courseNumber
creditHours

addSection()
assignProfessor()

Section

sectionNumber
classRoom
startTime
length

assignTA()

*1

Composition is an even stronger relationship that
implies that the parts cannot "live" without the
whole and that the parts cannot "live" in any other
whole

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Dependency lets us model objects that in some fashion use objects of another class, but don't keep a
reference to the destination object. UML uses a dashed line to indicate this dependency relationship,
which is often a directed relationship (one-way).

In this model, note that the Window class has a method named handleEvent() that most likely accepts
an argument that's an Event object. So if we update the Event class, it's possible that those changes
may break the Window class -- that brittleness is the property we model with the dependency
relationship.

Dependency Relationships

1 - 20

Window

currentPos
currentSize

paint()
move()
s ize()
handleEvent()

Event

message
source

A dependency relationship is a weak relationship
that indicates that changes to one class may affect
another, but that source objects don't maintain a
reference to the destination objects
In most cases, this relationship results from a
method in the source class accepting arguments of
type of the destination class

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

These two UML notations are less common than the other relationships, but can be useful in some
cases.

Qualified associations let you model the notion of a hash table (sometimes known as an associative
array), that consists of key-value pairs. Given the key, you can lookup the value. In the model shown
here, we can uniquely identify a given line item for an Order given the Product object.

Association classes let you model complex associations where the association itself has state. In this
case, we model an Person's tenure at a Company -- the association state is the date range. There is a
twist to association classes however -- by definition, in UML, there can be only one instance of the
association class for each pair of related objects. So in this case, a Person can have only one stint at a
Company, which is probably not realistic. If that restriction is unappealing, you can always model using
a standard class to contain the association properties, inserting it between the otherwise related
classes.

More on UML Relationships

1 - 21

Qualified
Association

Association
Class

LineItem

quantity

Product

Order Person Company

Employment

dateRange

Qualified associations let you model the scenario
where it's possible for a source class to lookup
objects of another class given additional
information
Association classes let you model associations that
themselves have attributes

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Interfaces let architects define sets of behaviors that programmers can implement. They are common in
toolkits for user interfaces. In fact, the model shown here is taken from Java's Swing user-interface
toolkit, which lets you register listeners that the system notifies of significant events, in this case, the
user's actions on a window on the screen.

UML provides two notations for interfaces -- the one on the left shows details about the interface, while
the one on the right uses a "lollipop" instead of a fleshed-out symbol for the interface, Lollipops are
most useful for well known interfaces where the additional detail clutters the diagram.

By the way, even though we show them here, it's common to leave out the behaviors in the
implementing class -- in other words, that behavior is implied by implementing the interface.

One more note: some languages, like Java and C++, define the notion of "abstract" classes, which are
like interfaces except that abstract classes can have some methods with an actual implementation.
Interfaces, by definition, can have no implementation.

Introduction to Interfaces

1 - 22

<<i nterface>>
M ouseListener

m ouseM oved()
m ouseCl icked()

< <class>>
M yHandler

m ouseMoved()
m ouseClicked()

< <class>>
M yHan dler

mouseM oved()
mouseC licked()

Implementing
an interface
(realizing)

MouseListener

An interface is a set of behaviors with no
implementation
Architects use interfaces to define roles that classes
can implement
Many languages (e.g. Java) support interfaces as
native syntax

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

In Java, we use the keyword "interface" to define the set of behaviors and use the keyword "implements"
on the class that provides the behaviors.

Sample Interface in Java

1 - 23

<<interface>>
MyInterface

<<class>>
MyClass

myMethod():void

1 public interface MyInterface
2 {
3 public void method1();
4 }
5
6 public class MyClass implements MyInterface
7 {
8 public void method1()
9 {
10 // do something interesting
11 }
12 . . .
13 }

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Stereotypes effectively let you add to the UML by creating new annotations. To indicate a stereotype,
you use guillemets (chevrons) around the stereotype name.

The "singleton" stereotype is actually a design pattern from the well known Design Patterns book written
by Gamma, et. al. We will cover more design patterns later in the course.

An abstract class is a class with some methods with no implementation (it's sort of like an interface).
You indicate the abstract (unimplemented) methods by writing the method name in italics.

Stereotypes

1 - 24

<<singleton>>
UUIDGenerator

createUUID()

<<abstract>>
BasicPolicy

calculateRisk()

Stereotypes

Stereotypes are a notation that let you extend the
UML
There are several commonly used stereotypes and
you can define domain-specific stereotypes

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Some OOA/D tools let you elide diagrams by temporarily hiding compartments, for example, hiding the
state and behaviors of a class and showing only the class name.

In addition, during analysis, you may first created elided diagrams and then flesh them out as you learn
more about the domain.

Elided Diagrams

1 - 25

Course Section

TeachingAssistant
Professor

*

*

`1

1
0..8

1..4

1

To make complex diagrams easier to read, you can
elide diagrams by omitting well known information

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Review Questions

1 - 26

Describe how you would use class diagrams in
differently in an analysis-level diagram versus a
design-level diagram.
Describe how composition and aggregation are
stronger relationships than simple associations.
What is the difference between an interface and a
class?

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Chapter Summary

1 - 27

In this chapter, you learned:

How to model classes at both the
analysis and design levels
The different ways to model
relationships between classes

Copyright © Descriptor Systems, 2001-2005. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

