
Copyright © Descriptor Systems, 2001-2011. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2011. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2011. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The scenario here is that at a large company, two departments independently define XML
content and write separate XML-processing applications. As long as each application remains
separate, there's no problem.

But if the company wants to write a new application that aggregates XML from the two
departments, now the element name "address" is ambiguous. In other words, when this new
application parses the XML, how can it distinguish between an HR "address" and an "IT"
address?

One possible way is for the application to examine the hierarchy of where "address" is defined,
but this complicates the application even in this simple example.

<employee>
 <name>Bill</name>

 <id>123</id>
 . . .
</employee>

 <address>
 123 Elm
 </address>

<server>
 <location>
 Bill's Office
 </location>

 . . .
</server>

 <address>
 12.34.56.78
 </address>

Human Resources XML IT Department XML

Copyright © Descriptor Systems, 2001-2011. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

This solution is to use an ad-hoc approach: have each department use an application-defined
prefix that eliminates ambiguity.

While this solution is feasible, it's not formal, and doesn't scale well across multiple
enterprises.

<hr-employee>
 <hr-name>Bill</hr-name>

 <hr-id>123</hr-id>
 . . .
</hr-employee>

 <hr-address>
 123 Elm
 </hr-address>

<it-server>
 <it-location>
 Bill's Office
 </it-location>

 . . .
</it-server>

 <it-address>
 12.34.56.78
 </it-address>

Human Resources XML IT Department XML

Copyright © Descriptor Systems, 2001-2011. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The Namespaces in XML, Third Edition Recommendation is available at:

http://www.w3.org/TR/2009/REC-xml-names-20091208/

hr:address

qualified name

prefix local
part

hr Some globally unique string

Copyright © Descriptor Systems, 2001-2011. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The "xmlns" attribute is defined by the Namespace Recommendation to to bind the prefix to
the URI.

Note that here we specified the prefix on the "employee" element itself - therefore, the
"employee" element itself is considered to be in the namespace.

<hr:employee

 <hr:name>Bill</hr:name>
 <hr:address>
 123 Elm
 </hr:address>
 <hr:id>123</hr:id>
 . . .
</hr:employee>

xmlns:hr="http://mycompany.com/HR">

Copyright © Descriptor Systems, 2001-2011. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Many people are familiar with URLs, less with URNs. Both are a type of URI.

URNs do not specify a location, or address, while URLs do. Namespace URIs don't need a
location since they they are simply qualifiers to avoid ambiguity, so using URNs works well.
That being said, most XML namespace URIs currently are defined as URLs, where we use the
uniqueness of the string and ignore its location meaning.

Uniform Resource Identifier (URI)

Uniform
Resource
Locater
(URL)

Uniform
Resource

Name
(URN)

<hr:employee

 <hr:name>Bill</hr:name>
 <hr:address>
 123 Elm
 </hr:address>
 <hr:id>123</hr:id>
 . . .
</hr:employee>

xmlns:hr="urn:xyz-123">

Copyright © Descriptor Systems, 2001-2011. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Here we define two prefixs, one for each department in the hypothetical company. Now there's
no ambiguity on the "address" elements, either for the human reader, or for a program that
parses this XML.

<assets
 xmlns:hr="http://mycompany.com/HR"
 xmlns:it="http://mycompany.com/IT">
 <hr:employee>
 <hr:name>Bill</hr:name>

 </hr:employee>
 <it:server>
 <it:location>Bill's Office</it:location>

 </it:server>
</assets>

 <hr:address>123 Elm</hr:address>

 <it:address>12.34.56.78</it:address>

Copyright © Descriptor Systems, 2001-2011. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Default namespaces using the "xmlns" attribute without specifying a prefix.

Like all namespace declarations, it applies (potentially) to to the element that carries the
"xmlns" attribute (if it's not prefixed) and all unprefixed descendent elements.

<assets
 xmlns:it="http://mycompany.com/IT">

 <it:server>
 <it:location>Bill's Office</it:location>
 <it:address>12.34.56.78</it:address>
 </it:server>
</assets>

 <employee xmlns="http://mycompany.com/HR">
 <name>Bill</name>
 <address>123 Elm</address>
 </employee>

no prefix on "xmlns" attribute

Copyright © Descriptor Systems, 2001-2011. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

If have XML content that uses namespaces, and you see a element without a prefix, there are
two possibilities:

1. The element is in a default namespace

2. The element is in no namespace at all

The only way to determine the difference is to look at the element in question and then look at
all of its ancestor elements, looking for an "xmlns" attribute with no prefix. If you find none,
then the element in question is in no namespace.

Though the algorithm described in the last paragraph is no problem for a parser, it does make
reading the XML more difficult for the human reader, which does violate one the guidelines for
XML itself.

<assets
 xmlns:it="http://mycompany.com/IT">

 <it:server>
 <it:location>Bill's Office</it:location>
 <it:address>12.34.56.78</it:address>
 </it:server>
</assets>

 <employee xmlns="http://mycompany.com/HR">
 <name>Bill</name>
 <address>123 Elm</address>
 </employee>

no prefix on "xmlns" attribute

Copyright © Descriptor Systems, 2001-2011. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The purpose of XML namespaces is to avoid ambiguity. According to the XML Recommendation,
attribute names on a given element must be unique, so using namespace prefixes on attributes
seems a bit odd.

However, the syntax is allowed, and is fairly common.

<roster xmlns="http://big.edu"
 xmlns:big="http://big.edu"
 xmlns:small="http://small.edu">

 <student

 <student

</roster>

big:name="Bill" small:name="George"/>

name="Sam" />

Copyright © Descriptor Systems, 2001-2011. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2011. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2011. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2011. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

<?xml version="1.0" encoding="UTF-8"?>
<env:Envelope
 xmlns:env="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <env:Body>
 <ns1:getModeratorResponse
 env:encodingStyle="http://www.w3.org/2003/05/soap-encoding"
 xmlns:ns1="http://mycompany.com/Meeting">

 </ns1:getModeratorResponse>
 </env:Body>
</env:Envelope>

 <moderator xsi:type="xsd:string">Sue Smith</moderator>

Copyright © Descriptor Systems, 2001-2011. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

