
Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

There are many other persistence annotations - this figure shows only the ones we will cover
in this chapter.

Instead of using annotations, you can instead write an XML file named orm.xml that provides
the metadata.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

You can optionally provide a name for the entity using this annotation.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Actually, using the @Entity annotation is not required - alternatively, you can write an XML
configuration file.

It's possible to use abstract classes as entities.

Clients of the entity must access the entity's state via get/set methods, but methods in the
entity class can access fields directly.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

You shouldn't mix the two approaches -- either annotate fields or properties, but not both.

If you don't write an @Column annotation, the persistence manager assumes that the column
name matches the property or field name.

The @Id annotation indicates that this field or property is part or all of the entity's primary key.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

If you don't write a @Table annotation, the table's name must match the entity's name.

There is also a @SecondaryTable annotation that lets you split an entity's properties amongst
more than one table.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Here we indicate that we don't want a image's binary data to be persisted since we do persist
the file name from which we can load the image.

Since the persistence manager doesn't initialize transients, it's up to the entity to do so itself,
typically by writing a method annotated with @PostLoad. The persistence provider calls such
methods after the persistent portion of an entity is established.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

Here we show the annotation definition for the @GeneratedValue annotation.

Note that both the "strategy" and "generator" elements (parameters) are optional with default
values.

If you use the TABLE or SEQUENCE generation types, then you must write a separate
@TableGenerator or @SequenceGenerator annotation.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

The AUTO strategy is common and flexible, especially in top-down scenarios, since it allows
the persistence provider to choose the best key-generation technique supported by the
database in use.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

If you choose either of these strategies, then you must write a separate @SequenceGenerator
or @TableGenerator annotation. The SEQUENCE strategy is common for Oracle installations,
which provide a fast and efficient sequence-table implementation.

If you choose the TABLE strategy, there must be a user-defined table in the database from
which the keys are extracted.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

There a couple of key benefits to using inheritance:

1. Inheritance lets you create models that closely approximate the real-world entity upon
which the model is based. Lowering the so-called "representational gap" makes your software
easier to understand and develop.

2. When combined with polymorphism (covered later), inheritance lets you create systems that
are easy to extend without risking breakage to existing code.

Person

Employee

Janitor DeskClerk

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

We will not cover the "table per concrete class" strategy since it's not used as often as the
other two.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

This strategy results in tables that aren't normalized, since superclass objects will have "null"
column entries, for example as shown here, a "Student" has no "major" (that's a property
introduced by the GradStudent subclass).

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

This strategy is elegant, but is slower than the single-table strategy, since it requires that the
persistence provider do a table join to retrieve all of the data for subclass objects.

Note that in the database screenshot, the "STUDENTID" column in GRADSTUDENT is a foreign
key into the STUDENT table.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

You can put lifecycle callback methods either in the entity itself or in a separate class.

Callback methods in the entity class have the signature:

public void xxxx()

Callback methods in a separate class have the signature:

public void xxxx(Object o) -- passed entity instance

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

In a Java EE application, you don't need to explicitly name the entity classes, since the container
will scan JPA JARs to discover them. The "class" elements are required for Java SE applications,
however.

The properties are obviously provider-specific. Read your JPA provider's documentation for
details.

Copyright © Descriptor Systems, 2001-2014. Course materials may not be reproduced in whole or in part without prior written consent of Joel Barnum

